Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(3): 1392-1403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37038635

RESUMO

The biological activity of drugs is exhibited due to their interactions with bio-receptors. Dicoumarol (DIC) is a natural hydroxycoumarin and a well-known anticoagulant. DNA is the genetic material and one of the targets of numerous drugs. The interaction of DIC with calf-thymus DNA (ct-DNA) has been studied using different biophysical techniques and docking studies. The binding constant in the order of 103 to 104 M-1 was observed from spectroscopic studies. Thermodynamic studies at 4 different temperatures revealed the spontaneity of the interaction with the entropy-driven process. Marker displacement studies with competitive markers of intercalators (ethidium bromide) and groove binders (Hoechst 33258) confirmed the groove-binding nature of DIC in DNA. The groove-binding mode of DIC was complemented by different studies like viscosity measurements, DNA melting, and the effect of KI on the binding. A minor perturbation in the DNA viscosity and no significant change in the DNA melting temperature (Tm) after binding with DIC further confirms the groove binding mode. The effect of KI on the DIC and DIC-DNA system suggested the absence of DIC intercalation. The absence of significant electrostatic force was revealed from the ionic-strength effect study. Binding-induced conformational variation in ct-DNA was absent in circular dichroism studies. Molecular docking studies suggested the position of DIC within the minor groove of ct-DNA, covering three base pairs long. The outcome of this report may help in understanding the pharmacodynamics and pharmacokinetics of dicoumarol analogs and related molecules.Communicated by Ramaswamy H. Sarma.


Assuntos
DNA , Dicumarol , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , DNA/química , Termodinâmica , Dicroísmo Circular , Espectrofotometria Ultravioleta , Viscosidade
2.
Int J Biol Macromol ; 244: 125301, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37315662

RESUMO

DNA is the major target for a number of pharmaceutical drugs. The interaction of drug molecules with DNA plays a major role in pharmacokinetics and pharmacodynamics. Bis-coumarin derivatives have diverse biological properties. Here, we have explored the antioxidant activity of 3,3'-Carbonylbis (7-diethylamino coumarin) (CDC) using DPPH, H2O2, and superoxide scavenging studies followed by its binding mode in calf thymus-DNA (CT-DNA) using several biophysical methods including molecular docking. CDC exhibited comparable antioxidant activity to standard ascorbic acid. The UV-Visible and fluorescence spectral variations indicate the CDC-DNA complex formation. The binding constant in the range of 104 M-1 was obtained from spectroscopic studies at room temperature. The fluorescence quenching of CDC by CT-DNA suggested a quenching constant (KSV) of 103 to 104 M-1 order. Thermodynamic studies at 303, 308, and 318 K revealed the observed quenching as a dynamic process besides the spontaneity of the interaction with negative free energy change. Competitive binding studies with site markers like ethidium bromide, methylene blue, and Hoechst 33258 reflect CDC's groove mode of interaction. The result was complemented by DNA melting study, viscosity measurement, and KI quenching studies. The ionic strength effect was studied to interpret the electrostatic interaction and found its insignificant role in the binding. Molecular docking studies suggested the binding location of CDC within the minor groove of CT-DNA, complementing the experimental result.


Assuntos
Antioxidantes , Dicumarol , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Conformação de Ácido Nucleico , DNA/química , Termodinâmica , Dicroísmo Circular , Viscosidade
3.
Int J Biol Macromol ; 225: 745-756, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36414083

RESUMO

The binding studies of DNA with small molecules have been an emerging field of research all the time since DNA as the genetic material is a major biological target for various drugs. Interpretation of small molecule-DNA binding helps in understanding their interactions with designing new drugs of greater medicinal activity. Posaconazole is an antifungal drug in the class of triazoles which are known to possess numerous pharmacological properties. In this work, the nature of the binding of posaconazole with calf-thymus DNA has been studied using spectroscopic techniques and molecular docking studies. A binding constant of the order of 103 M-1 was observed from UV-visible and fluorescence studies for the interaction between posaconazole and calf-thymus DNA. The fluorescence property of posaconazole was found to be quenched by calf-thymus DNA with a quenching constant of the order of 103 M-1. Competitive displacement of ethidium bromide and Hoechst 33258 by posaconazole using fluorescence technique suggested minor groove binding of posaconazole in calf-thymus DNA. Confirmation of the binding mode was further complemented by the viscosity measurement and DNA melting studies followed by KI quenching experiments. The studies on the effect of ionic strength on the binding suggested a possible role of electrostatic force in the interaction. Molecular docking studies reflected a crescent shape of the posaconazole within the minor groove of calf-thymus DNA validating the experimental findings showing the residues involved in the interaction.


Assuntos
Antifúngicos , DNA , Simulação de Acoplamento Molecular , Antifúngicos/farmacologia , Dicroísmo Circular , Espectrometria de Fluorescência , Termodinâmica , DNA/química , Triazóis , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...